SitemapImpressumDatenschutzerklärungdeutschenglish
MHH Logo

Publications

 

of Prof. Dr. Jürgen Alves

  • Keys, T.G., Fuchs, H.L., Ehrit, J., Alves, J., Freiberger, F. & Gerardy-Schahn, R. (2014) Engineering the product profile of a polysialyltransferase. Nat. Chem. Biol. 10: 437–442
  • Mackeldanz, P., Alves, J., Möncke-Buchner, E., Wyszomirski, K.H., Krüger, D.H., Reuter, M. (2013) Functional consequences of mutating conserved SF2 helicase motifs in the type III restriction endonuclease EcoP15I translocase domain. Biochimie 95: 817-823
  • Alves. J. (2012) Biochemie und Molekulare Biologie - Das Beste aus Biospektrum. (Hrsg.) Springer-Verlag Berlin Heidelberg
  • Wyszomirski, K.H., Curth, U., Alves, J., Mackeldanz, P., Möncke-Buchner, E., Schutkowski, M., Krüger, D.H. & Reuter M. (2012) Type III restriction endonuclease EcoP15I is a heterotrimeric complex containing one Res subunit with several DNA-binding regions and ATPase activity. Nucleic Acids Res. 40: 3610-3622
  • Alves. J. (2010) Die Biowissenschaften der letzten 40 Jahre. BIOspektrum 06.10: 709-710
  • Pingoud, V., Wende, W., Friedhoff, P., Reuter, M., Alves, J., Jeltsch, A., Mones, L., Fuxreiter, M. & Pingoud, A. (2009) On the divalent metal ion dependence of DNA cleavage by restriction endonucleases of the EcoRI family. J. Mol. Biol. 393:140-160
  • Szczepek, M., Mackeldanz, P., Möncke-Buchner, E., Alves, J., Krüger, D.H. & Reuter, M. (2009) Molecular analysis of restriction endonuclease EcoRII from Escherichia coli reveals precise regulation of its enzymatic activity by autoinhibition. Mol. Microbiol. 72:1011-1021
  • Wierstra, I. & Alves J. (2008) Cyclin E/Cdk2, P/CAF and E1A regulate the transactivation of the c-myc promoter by FOXM1. Biochem. Biophys. Res. Commun. 368:107-115
  • Wierstra, I. & Alves J. (2008) The c-myc Promoter: Still MysterY and Challenge. Adv. Cancer Res. 99C:113-333.
  • Wierstra, I. & Alves J. (2007) FOXM1, a typical proliferation-associated transcription factor. Biol. Chem. 388:1257-1274.
  • Wierstra, I. & Alves J. (2007) The central domain of transcription factor FOXM1c directly interacts with itself in vivo and switches from an essential to an inhibitory domain depending on the FOXM1c binding site. Biol. Chem. 388:805-818.
  • Wierstra, I. & Alves J. (2007) FOXM1c and Sp1 transactivate the P1 and P2 promoters of human c-myc synergistically. Biochem. Biophys. Res. Commun. 352:61-8.
  • Wierstra, I. & Alves, J. (2006) FOXM1c transactivates the human c-myc promoter directly via the two TATA boxes P1 and P2. FEBS J. 273:4645-67.
  • Wierstra, I. & Alves, J. (2006) FOXM1c is activated by cyclin E/Cdk2, cyclin A/Cdk2, and cyclin A/Cdk1, but repressed by GSK3-α. Biochem. Biophys. Res. Comm. 348, 99-108.
  • Wierstra, I. & Alves, J. (2006) Despite its strong transactivation domain, transcription factor FOXM1c is kept almost inactive by two different inhibitory domains. Biol. Chem. 387, 963-976.
  • Wierstra, I. & Alves, J. (2006) Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4. Biol. Chem. 387, 949-962.
  • Fritsche, P. & Alves, J. (2004) A monomeric mutant of restriction endonuclease EcoRI nicks DNA without sequence specificity. Biol. Chem.  385, 975-985.
  • Alves, J. & Vennekohl, P. (2004) Protein Engineering of Restriction Enzymes in A. Pingoud (Ed.) Restriction enzymes (Nucleic Acids and Molecular Biology 14) Springer, Berlin Heidelberg, 393-412
  • Scheele, U., Alves, J., Frank, R., Duwel, M., Kalthoff, C. & Ungewickell, E.J. (2003) Molecular and functional characterization of clathrin and AP-2 binding determinants within a disordered domain of auxilin. J. Biol. Chem. 278,:25357-68.
  • Rummel, A., Bade, S., Alves, J., Bigalke, H. & Binz, T. (2003) Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J. Mol. Biol. 326, 835-47.
  • Rosati, O., Srivastava, T.K., Katti, B.S. & Alves, J. (2002) Importance of Phosphate Contacts for Sequence Recognition by EcoRI Restriction Enzyme. Biochem. Biophys. Res. Commun. 295, 198-205
  • Binz, T., Bade, S., Rummel, A., Kollewe, A. & Alves, J. (2002) Arg(362) and Tyr(365) of the Botulinum Neurotoxin Type A light chain are involved in transition state stabilization. Biochemistry, 41, 1717-1723.
  • Kalthoff, C., Alves, J., Urbanke, C., Knorr, R. & Ungewickell, E.J. (2002) Unusual structural organization of the endocytic proteins AP180 and epsin 1. J. Biol. Chem., 277, 8209-8216.
  • Serth, J., Panitz, F., Herrmann, H. & Alves, J. (1998). Single-tube nested competitive PCR with homologous competitor for quantitation of DNA target sequences: theoretical description of heteroduplex formation, evaluation sensitivity, precision and linear range of the method. Nucl. Acids Res., 26, 4401-4408.
  • Fritz, A., Küster, W. & Alves, J. (1998). Asn141 is Essential for DNA Recogniton by EcoRI Restriction Endonuclease. FEBS Letters 438, 66-70
  • Windolph, S., Fritz, A., Oelgeschläger, T., Wolfes, H. & Alves, J. (1997). Sequence context influencing cleavage activity of several mutants of the restriction endonuclease EcoRI identified by a site selection assay. Biochemistry 36, 9478-9485.
  • Windolph, S. & Alves, J. (1997). Influence of divalent cations on inner arm mutants of restriction endonuclease EcoRI. Eur. J. Biochem., 244, 134-139.
  • Grabowski, G., Maass, G. & Alves, J. (1996). Asp59 is not important for the catalytic activity of the restriction endonuclease EcoRI. FEBS Letters, 381, 106-110.
  • Alves, J., Selent, U., & Wolfes, H. (1995). Accuracy of the EcoRV Restriction Endonu­clease: Binding and cleavage studies with Oligodeoxynucleotide Substrates Containing Degenerate Recognition Sequences. Biochemistry, 34, 11191-11197.
  • Grabowski, G., Jeltsch, A., Wolfes, H., Maass, G., & Alves, J. (1995). Site-directed mutagenesis in the catalytic center of the restriction endonculease EcoRI. Gene, 157, 113-118.
  • Jeltsch, A., Alves, J., Urbanke, C., Maass, G., Eckstein, H., Zhang, L., Bayer, E., & Pingoud, A. (1995). A dodecapeptide comprising the extended chain-a4 region of the restriction endonuclease EcoRI specifically binds to the EcoRI recognition site. J.Biol.Chem., 270, 5122-5129.
  • Kupper, D., Reuter, M., Alves, J., Mackedanz, P., Meisel, A., & Krüger, D. H. (1995). Hyperexpressed EcoRII renatured from inclusion bodies and native enzyme both exhibit essential cooperativity with two DNA sites. Prot. Expr. Purif., 6, 1-9.
  • Jeltsch, A., Alves, J., Wolfes, H., Maass, G., & Pingoud, A. (1994). Pausing of the restriction endonuclease EcoRI during linear diffusion on DNA. Biochemistry 33, 10215-10219.
  • Stünkel, S., Alves, J., & Kunstyr, I. (1993). Characterization of two "Metabacterium" sp. from the gut of rodents. 2. Heteroxenic cultivation and proof of dipicolinic acid in "M. polyspora". Folia Microbiol., 38, 171-175.
  • Jeltsch, A., Fritz, A., Alves, J., Wolfes, H., & Pingoud, A. (1993). A fast and accurate enzyme linked immunosorbent assay for the determination of the DNA cleavage activity of restriction endonuleases. Anal. Biochem., 213, 234-240.
  • Jeltsch, A., Alves, J., Wolfes, H., Maass, G., & Pingoud, A. (1993). Substrate assisted catalysis in the cleavage of DNA by the restriction enzymes EcoRI and EcoRV. Proc. Natl. Acad. Sci. USA, 90, 8499-8503.
  • Pingoud, A., Alves, J., & Geiger, R. (1993). Restriction enzymes. In M. M. Burell (Ed.), Enzymes of Molecular Biology (Methods in Molecular Biology, vol. 16, pp. 107-200). Totowa NJ: Humana Press.
  • Jeltsch, A., Alves, J., Oelgeschläger, T., Wolfes, H., Maass, G., & Pingoud, A. (1993). Mutational analysis of the function of Gln115 in the EcoRI restriction endonuclease, a critical amino acid for recognition of the inner thymidine residue in the sequence -GAATTC- and for coupling specific DNA binding to catalysis. J. Mol. Biol., 229, 221-234.
  • Thielking, V., Selent, U., Köhler, E., Landgraf, A., Wolfes, H., Alves, J., & Pingoud, A. (1992). Mg2+ confers DNA binding specificity to the EcoRV restriction endonuclease. Biochemistry, 31, 3727-3732.
  • Jeltsch, A., Alves, J., Maass, G., & Pingoud, A. (1992). On the catalytic mechanism of EcoRI and EcoRV: A detailed proposal based on biochemical results, structural data and molecular modelling. FEBS Letters, 304, 4-8.
  • Selent, U., Rüter, T., Köhler, E., Liedtke, M., Thielking, V., Alves, J., Oelgeschläger, T., Wolfes, H., Peters, F., & Pingoud, A. (1992). A site-directed mutagenesis study to identify amino acid residues involved in the catalytic function of the restriction endonuclease EcoRV. Biochemistry, 31, 4808-4815.
  • Thielking, V., Alves, J., Fliess, A., Maass, G., & Pingoud, A. (1990). The accuracy of the EcoRI restriction endonuclease: binding and cleavage studies with oligodeoxynucleotide substrates containing degenerate recognition sequences. Biochemistry, 29, 4681-4692.
  • Oelgeschläger, T., Geiger, R., Rüter, T., Alves, J., Fliess, A., & Pingoud, A. (1990). Probing the function of individual amino acid residues in the DNA binding site of the EcoRI restriction endonuclease by analysing the toxicity of genetically engineered mutants. Gene, 89, 19-27.
  • Alves, J., Urbanke, C., Fliess, A., Maass, G., & Pingoud, A. (1989). Fluorescence stopped-flow kinetics of the cleavage of synthetic oligodeoxynucleotides by the EcoRI restriction endonuclease. Biochemistry, 28, 7879-7888.
  • Geiger, R., Alves, J., Oelgeschläger, T., Rüter, T., Fließ, A., & Pingoud, A. (1989). Protein engineering of the EcoRI restriction endonuclease. In D. Behrens & A. Driesel J. (Eds.), Dechema Biotechnology-Conferences (Vol.3, pp. 389-396). Heidelberg: Verlag Chemie.
  • Alves, J., Rüter, T., Geiger, R., Fließ, A., Maass, G., & Pingoud, A. (1989). Changing the hydrogen bonding potential in the DNA binding site of EcoRI by site directed mutagenesis drastically reduces the enzymatic activity, not however, the preference of this restriction endonuclease for cleavage within the site -GAATTC-. Biochemistry, 28, 2678-2684.
  • Geiger, R., Rüter, T., Alves, J., Fließ, A., Wolfes, H., Pingoud, V., Urbanke, C., Maass, G., Pingoud, A., Düsterhöft, A., & Kröger, M. (1989). Genetic engineering of EcoRI mutants with altered amino acid residues in the DNA binding site. Physico-chemical investigations give evidence for an altered monomer/dimer equilibrium for the Gln144Lys145 and Gln144Lys145Lys200 mutants. Biochemistry, 28, 2667-2677.
  • Pingoud, A., Wehrmann, M., Pieper, U., Gast, F.-U., Urbanke, C., Alves, J., Feuerstein, J., & Wittinghofer, A. (1988). Spectroscopic and hydrodynamic studies reveal structural differences in normal and transforming H-ras gene products. Biochemistry, 27, 4735-4740.
  • Wolfes, H., Alves, J., Fließ, A., Geiger, R., & Pingoud, A. (1986). Site directed mutagenesis experiments suggest that Glu 111, Glu 144 and Arg 145 are essential for endonucleolytic activity of EcoRI. Nucl. Acids Res., 14, 9063-9080.
  • Pingoud, A., Urbanke, C., Alves, J., Ehbrecht, H.-J., Zabeau, M., & Gualerzi, C. (1984). Effect of Polyamines and Basic Proteines on Cleavage of DNA by Restriction Endonucleases. Biochemistry, 23, 5697-5703.
  • Alves, J., Pingoud, A., Haupt, W., Langowski, J., Peters, F., Maass, G., & Wolff, C. (1984). The influence of sequences adjacent to the recognition site on the cleavage of oligonucleotides by the EcoRI endonuclease. Eur. J. Biochem., 140, 83-92.
  • Langowski, J., Alves, J., Pingoud, A., & Maass, G. (1983). Does the specific recognition of DNA by the restriction endonuclease EcoRI involve a linear diffusion step? Investigation of the processivity of the EcoRI endonuclease. Nucl. Acids Res., 11, 501-513.
  • Alves, J., Pingoud, A., Langowski, J., Urbanke, C., & Maass, G. (1982). Two Identical Subunits of the EcoRI Restriction Endonuclease Co-operate in the Binding and Cleavage of the Palindromic Substrate. Eur. J. Biochem., 124, 139-142.

(last changes 5-Jun-14 by Jürgen Alves)